under contract No. W-31-109-ENG-38 (MAB, JMW) and the National Science Foundation – Office of Science and Technology Centers under contract No. STC8809854 [(Argonne, IL, GMF) Science and Technology Center for Superconductivity, University of Illinois-UC].

References

- CONWELL, E. (1988). Editor. Semiconductors and Semimetals, Vol 27. New York: Academic Press.
- INOUE, M. B., INOUE, M., FERNANDO, Q. & NEBESNY, K. W. (1986). Inorg. Chem. 25, 3976–3980.

- JOHNSON, C. K. (1965). Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MAYERLE, J. J., TORRANCE, J. B. & CROWLEY, J. I. (1979). Acta Cryst. B35, 2988-2995.
- STROUSE, C. (1978). UCLA Crystallographic Package. Univ. of California, Los Angeles, USA.
- TORRANCE, J. B., MAYERLE, J. J., LEE, V. Y. & BECHGAARD, K. (1979). J. Am. Chem. Soc. 101, 4747–4748.
- YAKUSHI, K., NISHIMURA, S., SUGANO, T., KURODA, H. & IKEMOTO, I. (1980). Acta Cryst. B36, 358-363.

Acta Cryst. (1991). C47, 764-768

Solid-State Stereochemistry of Diels–Alder Adducts between a Bicyclic Cyclohexadienone Derivative and α-Acyloxyacrylonitrile

BY ANDRÉ G. MICHEL,* GASTON BOULAY, NADINE MICHEL-DEWEZ AND MARC DROUIN

Laboratoire de Chimie Structurale, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

AND LUC RUEST AND PIERRE DESLONGCHAMPS

Laboratoire de Chimie organique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

(Received 14 March 1990; accepted 7 June 1990)

Abstract. λ (Cu $K\overline{\alpha}$) = 1.54056 Å, T = 298 K. (4*a*): rel-(1S,7S,9S,11R)-11-Cyano-1-methyl-8-oxo-9,9-(oxoethylenedioxy)tricyclo[5.2.2.0^{2,6}]undec-2(6)-en-11-yl acetate, $C_{17}H_{17}NO_6$, $M_r = 331.32$, monoclinic, $P2_1/a$, a = 9.3791 (5), b = 14.8506 (15), c = 12.7209 (15) Å, $\beta = 110.188 (7)^{\circ}, V = 1663.0 (3) \text{ Å}^3, Z = 4, D_x =$ 1.323 Mg m⁻³, $\mu = 0.81$ mm⁻¹, F(000) = 695.91, R(F) = 0.079, wR = 0.045, S = 4.35 for 2127 significant reflections. (4b): rel-(1S,7S,9S,11R)-11-Cyano-1-methyl-8-oxo-9,9-(oxoethylenedioxy)tricyclo[5.2.2.0^{2,6}]undec-2(6)-en-11-yl 3.3-ethylenedioxybutanoate, $C_{21}H_{23}NO_8$, $M_r = 417.41$, orthorhombic, $P2_1nb$, a = 8.5159 (3), b = 10.3035 (3), c =23.1263 (8) Å, V = 2029.18 (12) Å³, Z = 4, $D_x = 1.366$ Mg m⁻³, $\mu = 0.85$ mm⁻¹, F(000) = 879.89, R(F) = 0.038, wR = 0.027, S = 1.709 for 2039 significant reflections. (5a): rel-(1S,7S,9R,11R)-11-Cyano-1-methyl-8-oxo-9,9-(oxoethylenedioxy)tri $cyclo[5.2.2.0^{2.6}]undec-2(6)-en-11-yl$ acetate, $C_{17}H_{17}$ -NO₆, $M_r = 331.32$, triclinic, $P\overline{1}$, a = 8.3623 (8), b =9.0673 (6), c = 11.4951 (10) Å, $\alpha = 102.982$ (8), $\beta =$ 95.983 (6), $\gamma = 106.828$ (5)°, V = 799.45 (6) Å³, Z =2, $D_x = 1.376 \text{ Mg m}^{-3}$, $\mu = 0.84 \text{ mm}^{-1}$, F(000) =347.95, R(F) = 0.039, wR = 0.030, S = 3.75 for 2685 significant reflections. (5b): rel-(1S,7S,9R,11R)-11-Cyano-1-methyl-8-oxo-9,9-(oxoethylenedioxy)tricyclo[5.2.2.0^{2,6}]undec-2(6)-en-11-yl 3.3-ethylenedioxybutanoate, $C_{21}H_{23}NO_8$, $M_r = 417.41$, monoclinic, A2/n, a = 17.8531(5), b = 11.2599(3), c =20.7317 (7) Å, $\beta = 104.593$ (3)°, V = 4033.13 (8) Å³, Z = 8, $D_x = 1.375$ Mg m⁻³, $\mu = 0.85$ mm⁻¹, F(000) = 1759.77, R(F) = 0.042, wR = 0.024, S = 1.27 for 2803 significant reflections. The crystal structures of the two pairs of Diels-Alder adducts reveal the stereochemistry of the spirolactonic ring and the cyanoester moiety. In the four molecules the cyano groups are *cis* to the cyclopentene bridge. The high values of R(F) (0.079) and S (4.35) for (4a) reflect the poor quality of the crystals. This spatial arrangement is compatible with the classical endo approach of the reagents.

Introduction. In the course of the total synthesis of ryanodol (1) (Deslongchamps, Bélanger, Berney, Borschberg, Brousseau, Doutheau, Durand, Katayama, Lapalme, Leturc, Liao, Maclachlan, Maffrand, Marazza, Martino, Moreau, Ruest, St-Laurent, Saintonge & Soucy, 1990), the Diels-Alder reactions between spirolactone dienone (2) and dienophiles (3a) and (3b) were investigated. Fol-

© 1991 International Union of Crystallography

^{*} To whom correspondence should be addressed.

lowing this strategy, the use of 2-acyloxyacrylonitrile derivatives would have eased some subsequent chemical transformation in the synthesis. It was also hoped that an aldol condensation between C(17) and C(1) in Diels-Alder adducts (4) and (5) could be performed. This connection would have initiated a regio- and stereospecific formation of ring A of ryanodol (1). As this aldolization was not successful in our hands, this approach was abandoned for a better one. Classical spectroscopy (data included in the material for deposit) was unsuccessful in determining the stereochemistry of the compounds involved. Nevertheless, the spatial implications underlying these results needed to be clarified and required further structural studies.

(4b) $R = CH_3C(OCH_2)_2$ (5b) $R = CH_3C(OCH_2)_2$

Experimental. Crystals of (4*a*), (4*b*), (5*a*) and (5*b*) were obtained by evaporation of a CH₂Cl₂-hexane solution (1:4). Intensities were collected on an Enraf-Nonius CAD-4 automatic diffractometer; graphite monochromator, Cu $K\overline{\alpha}$ radiation. The unit-cell dimensions were obtained by least-squares fit of 24 [(4*a*), (5*a*)], 31 [(4*b*), (5*b*)] well centered reflections in the range $60 \le 2\theta \le 100^{\circ}$. Reflections were measured with a constant speed of $3^{\circ} \min^{-1}$; $2\theta_{\max} = 143 \cdot 6^{\circ}$; reflections satisfying $I \ge 3\sigma(I)$ were considered as observed. During data collection, the intensities of two standard reflections were monitored every 150 reflections, no significant variation observed.

Compound (4*a*): Crystal $0.30 \times 0.30 \times 0.25$ mm; a total of 3238 reflections collected (3228 independent, 2127 observed) in the ranges $-11 \le h \le 10$, $0 \le k \le 17$, $0 \le l \le 15$; maximum Δ/σ (for non-H atoms) = 0.34; maximum and minimum density peaks = 0.30

Table 1. Final coordinates and equivalent B values with e.s.d.'s in parentheses

$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_j^*a_j.a_j.$

	•4	,	. , . ,	
	x	У	z	$B_{eq}(\text{\AA}^2)$
Compound	d (4a)			
O(1)	0.5624 (4)	0.56353 (23)	0.1563 (3)	6.97 (23)
O(2)	0.6137 (3)	0.52016 (19)	0.38776 (25)	4.49 (17)
O(3)	0.8359 (4)	0.58699 (20)	0.4789 (3)	5-38 (18)
O(4)	0.6895 (4)	0.41007 (20)	0.2946 (3)	5.27 (19)
0(5)	0.2505 (4)	0.60152 (19)	0.2324(3)	4.01 (19)
U(0)	-0.0478(4)	0.00133(24) 0.4698(3)	0.1160 (3)	5.81 (25)
cu)	0.4879(6)	0.5124(3)	0.1885 (4)	4.2 (3)
C(2)	0.5598 (5)	0.4558 (3)	0.2967 (4)	4.1 (3)
C(3)	0.4421 (5)	0.3927 (3)	0.3141 (4)	3.82 (23)
C(4)	0.3107 (6)	0.4524 (3)	0.3208 (4)	3.71 (25)
C(5)	0.2403 (5)	0.5081 (3)	0.2126 (4)	3.58 (23)
C(6)	0.3219 (5)	0.4903 (3)	0.1283 (4)	3.53 (24)
C(7)	0.3200 (5)	0.3887(3)	0.1124(4)	3.8 (3)
C(8)	0.2623(9)	0.3342(4) 0.3364(4)	0.0550 (6)	7.9 (5)
C(9)	0.2980(9) 0.3800(10)	0.2304(4) 0.2413(4)	0.1800 (6)	6.2(4)
	0.3834(5)	0.3417(3)	0.2049(4)	3.9 (3)
C(12)	0.7677(6)	0.5306 (3)	0.4142 (4)	4.5 (3)
C(13)	0.8215 (7)	0.4645 (4)	0.3479 (6)	5.7 (3)
C(14)	0.5043 (6)	0.3327 (3)	0.4179 (4)	5.7 (3)
C(15)	- 0.0753 (5)	0.4879 (3)	0.1588 (4)	4.04 (24)
C(16)	0.1814 (7)	0.6409 (4)	0.2964 (5)	5.4 (3)
C(17)	0.2069 (9)	0.7453 (4)	0.3028 (6)	8.2 (2)
Compoun	d (4b)			
O(1)	0.5226 (5)	0.9976 (3)	0.08997 (11)	4.68 (14)
O(2)	0.5954 (4)	0.88132 (21)	0.19682 (10)	3.39 (10)
O(3)	0.3607 (4)	0.8981 (3)	0.24090 (13)	5.01 (15)
O(4)	0.67395	1.09267 (23)	0.19673 (11)	3.74 (12)
O(5)	0.7420 (5)	0.73710 (21)	0.05475 (10)	3.40 (10)
O(6)	0.8928(5)	0.5621(3)	0.07990(12)	4.34 (13)
0(7)	0.3801(3) 0.5266(4)	0.4370 (3)	0.07889(12) 0.13550(11)	3.93 (11)
N (0)	1.1240 (5)	0.8001(3)	0.01770(15)	4.90 (17)
Ĉ	0.6557 (6)	0.9781(3)	0.10439 (16)	3.19 (15)
C(2)	0.7006 (6)	0.9715 (3)	0.16982 (15)	3.08 (14)
C(3)	0.8738 (6)	0.9311 (3)	0.17649 (15)	3.14 (14)
C(4)	0.8923 (5)	0.8029 (3)	0.14281 (4)	3.19 (14)
C(5)	0.8633 (5)	0.8228 (3)	0.07684 (14)	2.98 (14)
C(6)	0.7975(5)	1.0534 (3)	0.08910 (14)	3.52 (14)
C(n)	1.0026 (7)	1.1636 (4)	0.06070(10)	4.92 (20)
C(9)	1.1155 (8)	1.2076 (5)	0.10831(24)	9.1 (4)
C(10)	1.0857 (7)	1.1299 (4)	0.16255 (20)	5.34 (22)
C(11)	0.9600 (5)	1.0364 (3)	0.14377 (16)	3.46 (15)
C(12)	0.4746 (6)	0.9493 (4)	0.22137 (16)	3.71 (16)
C(13)	0.5193 (5)	1.0905 (4)	0.21936 (17)	4.19 (18)
C(14)	0.9211 (6)	0.9151 (4)	0.23973(17)	4.54 (19)
C(15)	1.0107 (0)	0.6056 (3)	0.05855 (15)	3.37 (16)
C(10)	0.6258 (6)	0.5333(3)	0.04151(15)	3.67 (16)
C(18)	0.5378 (6)	0.4880(3)	0.09581 (16)	3.62 (17)
C(19)	0.6144 (7)	0.3734 (4)	0.12469 (17)	5.06 (21)
C(20)	0.2767 (7)	0 5402 (5)	0.10943 (24)	6.8 (3)
C(21)	0.3756 (7)	0.6523 (4)	0.12708 (19)	5.15 (21)
Compour	d (5a)			
N	0.78397 (24)	0.65415(20)	0.37036 (16)	5.84 (11)
$\dot{0}$	0.71231(17)	0.09531(15)	-0.00875(10)	4.51 (7)
O(2)	0.65750 (14)	-0.10124(13)	0.15693 (10)	3.43 (6)
O(3)	0.65527 (19)	-0.34872 (15)	0.07281 (13)	6.19 (8)
O(4)	0.93715 (14)	0.03914 (14)	0.17066 (10)	3.54 (6)
O(5)	0.98480 (15)	0.45512 (14)	0.18158 (10)	3.59 (6)
O(6)	1.16919 (17)	0.61558 (16)	0.34957 (12)	5.50 (7)
C(1)	0.72603(20)	0.05605 (20)	0.18839 (14)	2.93 (8)
C(2)	0.78052(19)	0.14613(18)	0.31902(14)	2.48 (7)
C(4)	0.91190 (22)	0.31396 (20)	0.34104 (15)	2.86 (8)
C(5)	0.85857 (21)	0.40656 (19)	0.25478 (14)	2.89 (8)
C(6)	0.69461 (23)	0.29880 (21)	0.16286 (15)	2.97 (8)
C(7)	0.56450 (21)	0.24286 (20)	0.23842 (14)	2.97 (8)
C(8)	0.3923 (3)	0.2618 (3)	0.24366 (21)	4.51 (12)
C(9)	0.3360 (4)	0.1811(5) 0.1201(2)	0.3421 (3)	7·22 (21)
C(10)	0.40812 (20)	0.1201 (3)	0.31618 (14)	4·11 (11) 2.71 (7)
C(12)	0.00012(20) 0.7313(3)	-0.20982(22)	0.11007(16)	3.91 (9)
C(13)	0.9131 (3)	-0.1232(3)	0.1160 (3)	4.70 (11)
C(14)	0.8270 (3)	0.06205 (24)	0.41125 (18)	3.43 (10)
C(15)	0.82125 (24)	0.54924 (21)	0.32143 (16)	3.59 (9)

Table 1 (cont.)

Table 2 (cont.)

C(16) 1 C(17) 1	x •1380 (3) •2515 (4)	y 0·56339 (21) 0·6076 (4)	<i>z</i> 0·24152 (18) 0·1542 (3)	B _{eq} (Å ²) 4·05 (10) 6·07 (16)	O(4)—C(2) O(4)—C(13) O(5)—C(5) O(5)—C(16)	1·413 (4) 1·418 (4) 1·452 (5) 1·381 (4)	C(5)—C(6) C(5)—C(15) C(6)—C(7) C(7)—C(8)	1·560 (5) 1·484 (6) 1·501 (6) 1·491 (6)
Compound (5. O(1) 0 O(2) 0 O(3) 0 O(4) 0 O(5) 0 O(6) 0 O(7) 0 O(8) 0	b) 57472 (9) 58446 (8) 71265 (9) 57648 (8) -41493 (8) -32797 (9) -30992 (9) -43676 (9)	0·45102 (17) 0·55726 (13) 0·58492 (16) 0·35523 (13) 0·25690 (13) 0·15605 (14) 0·13541 (18) 0·12488 (15)	0.94926 (8) 0.82684 (7) 0.84983 (9) 0.81974 (7) 0.89644 (7) 0.81890 (8) 0.97447 (8) 1.02909 (8)	4-97 (9) 3-20 (7) 5-40 (10) 2-95 (7) 3-02 (7) 4-01 (8) 5-11 (10) 4-29 (8)	$\begin{array}{c} O(6) - C(16) \\ O(7) - C(18) \\ O(7) - C(20) \\ O(8) - C(21) \\ N - C(15) \\ C(1) - C(2) \\ C(1) - C(2) \\ C(1) - C(6) \\ C(2) - C(3) \end{array}$	1-188 (6) 1-434 (6) 1-414 (7) 1-426 (4) 1-435 (6) 1-134 (6) 1-562 (5) 1-511 (6) 1-540 (7)	$\begin{array}{c} C(7)-C(1)\\ C(8)-C(9)\\ C(9)-C(10)\\ C(10)-C(11)\\ C(12)-C(13)\\ C(16)-C(17)\\ C(17)-C(18)\\ C(18)-C(19)\\ C(20)-C(21) \end{array}$	1.323 (5) 1.530 (8) 1.510 (7) 1.504 (6) 1.505 (5) 1.501 (6) 1.535 (6) 1.505 (6) 1.487 (7)
N 0 C(1) 0 C(2) 0 C(3) 0 C(4) 0 C(5) 0 C(7) 0 C(7) 0 C(8) 0 C(10) 0 C(11) 0 C(12) 0 C(13) 0 C(15) 0 C(15) 0 C(17) 0 C(18) 0 C(20) 0 C(21) 0	24605 (11) -52165 (13) -53543 (12) -40392 (14) -43735 (12) -448725 (12) -44872 (12) -43641 (13) -41160 (12) -37373 (20) -37373 (20) -37578 (13) -3758 (13) -3209 (3) -4056 (3) Bond Length	0-4128 (20) 0-45541 (20) 0-45560 (19) 0-45760 (19) 0-36095 (22) 0-36095 (22) 0-36426 (20) 0-46759 (22) 0-57886 (21) 0-6590 (3) 0-7653 (3) 0-6583 (3) 0-57854 (20) 0-571742 (23) 0-38734 (21) 0-38734 (21) 0-38734 (21) 0-38734 (21) 0-3638 (23) 0-05395 (24) 0-05395 (24) 0-05395 (23) 0-05381 (3) 0-2194 (3) es (Å) and a	0-85228 (11) 0-90050 (11) 0-82945 (10) 0-77859 (10) 0-78862 (11) 0-85815 (10) 0-85982 (11) 0-85982 (11) 0-85982 (11) 0-87644 (17) 0-78873 (11) 0-79873 (11) 0-79873 (11) 0-79873 (11) 0-79873 (11) 0-79873 (11) 0-85326 (11) 0-73859 (14) 1-03153 (15) 1-03158 (19) 1-05758 (19) 0-2000 (11) 0-2000 (11	$5 \cdot 19 (13)$ $2 \cdot 96 (10)$ $2 \cdot 53 (9)$ $2 \cdot 44 (9)$ $2 \cdot 66 (10)$ $2 \cdot 98 (11)$ $3 \cdot 10 (10)$ $4 \cdot 74 (16)$ $6 \cdot 33 (21)$ $4 \cdot 39 (15)$ $2 \cdot 82 (10)$ $3 \cdot 57 (12)$ $3 \cdot 61 (13)$ $3 \cdot 39 (12)$ $3 \cdot 37 (11)$ $3 \cdot 19 (11)$ $3 \cdot 39 (12)$ $3 \cdot 39 (12)$ $3 \cdot 39 (12)$ $3 \cdot 37 (11)$ $3 \cdot 19 (11)$ $5 \cdot 71 (20)$ $8 \cdot 7 (3)$ $6 \cdot 41 (21)$ with e.s.d.'s	$\begin{array}{c} C(2) & -O(2) - C(12) \\ C(2) & -O(4) - C(13) \\ C(5) - O(5) - C(16) \\ C(18) - O(7) - C(20) \\ O(1) - C(1) - C(2) \\ O(1) - C(1) - C(6) \\ O(2) - C(2) - C(1) \\ O(2) - C(2) - C(3) \\ O(4) - C(2) - C(3) \\ C(1) - C(2) - C(3) \\ C(2) - C(3) - C(14) \\ C(3) - C(14) \\ C(4) - C(3) - C(14) \\ C(3) - C(4) \\ C(5) - C(5) - C(6) \\ O(5) - C(5) - C(5) \\ O(5) \\ O(5) - C(5) \\ O(5) \\$	$108-6 (3) \\107-3 (3) \\116-4 (3) \\108-4 (3) \\107-2 (3) \\120-5 (4) \\127-6 (3) \\111-8 (4) \\106-3 (3) \\107-3 (3) \\110-4 (3) \\110-4 (3) \\110-4 (3) \\110-4 (3) \\110-2 (3) \\102-8 (3) \\112-2 (3) \\102-8 (3) \\112-2 (3) \\112-2 (3) \\112-2 (3) \\112-2 (3) \\112-4 (3) \\115-4 (3) \\115-4 (3) \\115-4 (3) \\115-4 (3) \\112-1 (3) \\112-1 (3) \\112-1 (3) \\104-2 (3) \\110-7 (3) \\100-7 (3)$	$\begin{array}{c} C(1)-C(6)-C(7)\\ C(5)-C(6)-C(7)\\ C(6)-C(7)-C(8)\\ C(6)-C(7)-C(11)\\ C(8)-C(9)-C(10)\\ C(7)-C(8)-C(9)\\ C(7)-C(8)-C(9)\\ C(9)-C(10)\\ C(9)-C(10)-C(11)\\ C(3)-C(11)-C(10)\\ C(3)-C(10)-C(13)\\ C(10)-C(10)-C(17)\\ C(16)-C(17)-C(18)\\ C(17)-C(18)-C(17)\\ C(18)-C(17)\\ C(18)-C(17)\\ C(18)-C(17)\\ C(18)-C(17)\\ C(18)-C(12)\\ C(10)-C(18)-C(17)\\ C(18)-C(12)\\ C(10)-C(18)-C(12)\\ C(10$	105.7 (3) 105.7 (3) 116.2 (3) 113.4 (4) 102.0 (4) 102.7 (4) 116.4 (4) 131.3 (3) 112.2 (4) 122.8 (3) 107.0 (3) 130.2 (4) 105.1 (3) 177.8 (4) 123.3 (4) 108.6 (4) 128.0 (3) 106.2 (4) 106.5 (3) 110.8 (3) 109.9 (3) 109.1 (3) 109.2 (3)
Compound (4	a)	n parenthese.	s		C(4)—C(5)—C(6) C(4)—C(5)—C(15) C(6)—C(5)—C(15) C(1)—C(6)—C(5)	109·8 (3) 111·4 (3) 108·4 (3) 107·0 (3)	O(8)—C(18)—C(19) C(17)—C(18)—C(19) O(7)—C(20)—C(21) O(8)—C(21)—C(20)	110·0 (3)) 113·0 (4) 104·6 (5) 102·5 (3)
$\begin{array}{l} O(1) - C(1) \\ O(2) - C(2) \\ O(2) - C(12) \\ O(3) - C(12) \\ O(4) - C(2) \\ O(4) - C(2) \\ O(4) - C(13) \\ O(5) - C(13) \\ O(5) - C(16) \\ O(5) - C(16) \\ O(6) - C(16) \\ N - C(15) \\ C(1) - C(2) \\ C(1) - C(2) \\ C(1) - C(6) \\ C(2) - C(3) \\ C(3) - C(4) \end{array}$	1-196 (6) 1-451 (5) 1-374 (6) 1-193 (6) 1-402 (6) 1-437 (6) 1-437 (6) 1-474 (5) 1-351 (7) 1-175 (7) 1-126 (6) 1-554 (7) 1-516 (7) 1-521 (7)	$\begin{array}{c} C(3) - C \\ C(3) - C \\ C(4) - C \\ C(5) - C \\ C(5) - C \\ C(6) - C \\ C(7) - C \\ C(7) - C \\ C(7) - C \\ C(7) - C \\ C(10) - C$	(11) 1 '(14) 1 '(5) 1 '(6) 1 '(15) 1 '(15) 1 '(15) 1 '(17) 1 '(11) 1 '(11) 1 '(11) 1 '(10) 1 C(11) 1 C(13) 1 C(17) 1	1:509 (6) 1:531 (6) 1:546 (6) 1:540 (7) 1:491 (6) 1:521 (6) 1:521 (6) 1:520 (7) 1:320 (6) 1:520 (7) 1:510 (10) 1:523 (7) 1:523 (7) 1:491 (8) 1:567 (8)	Compound (5 <i>a</i>) N-C(15) O(1)-C(1) O(2)-C(2) O(3)-C(12) O(4)-C(2) O(4)-C(2) O(4)-C(13) O(5)-C(5) O(5)-C(16) O(6)-C(16) O(1)-C(2) C(1)-C(6) C(2)-C(3)	1·1341 (23) 1·2015 (19) 1·4252 (19) 1·3504 (20) 1·1880 (22) 1·4215 (18) 1·4039 (23) 1·4487 (20) 1·3653 (23) 1·1965 (24) 1·550 (3) 1·5136 (20)	C(3)—C(11) C(3)—C(14) C(4)—C(5) C(5)—C(6) C(5)—C(7) C(7)—C(11) C(7)—C(11) C(9)—C(10) C(10)—C(11) C(12)—C(13) C(16)—C(17)	1-5085 (22) 1-518 (3) 1-545 (3) 1-5522 (24) 1-4820 (22) 1-5069 (25) 1-504 (3) 1-523 (4) 1-523 (4) 1-525 (4) 1-4974 (25) 1-482 (3)
$\begin{array}{c} C(2) & -O(2) & -C(\\ C(2) & -O(4) & -C(\\ C(5) & -O(5) & -C(\\ O(1) & -O(1) & -C(1) & -C(1) \\ O(1) & -C(1) & -C(1) \\ O(2) & -C(2) & -C(2) \\ O(2) & -C(2) & -C(2) \\ O(2) & -C(2) & -C(2) \\ O(4) & -C(2) & -C(2) \\ O(4) & -C(2) & -C(2) \\ O(4) & -C(2) & -C(2) \\ C(2) & -C(3) & -C(1) \\ C(2) & -C(3) & -C(1) \\ C(2) & -C(3) & -C(1) \\ C(4) & -C(3) & -C(1) \\ C(4) & -C(3) & -C(1) \\ C(3) & -C(4) & -C(3) \\ O(5) & -C(5) & -C(4) \\ O(5) & -C(5) & -C(4) \\ O(5) & -C(5) & -C(4) \\ C(4) & -C(5) & -C(6) \\ C(4) & -C(5) & -C(6) \\ C(4) & -C(6) \\ C(4) & -C(6) & -C(6) \\ C(4) & -C($	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (5) - C(15) \\ (5) - C(15) \\ (6) - C(5) \\ (6) - C(7) \\ (6) - C(7) \\ (7) - C(8) \\ (7) - C(11) \\ (7) - C(11) \\ (7) - C(11) \\ (8) - C(9) \\ (9) - C(10) \\ (10) - C(11) \\ (11) - C(7) \\ (11) - C(10) \\ ($	111-0 (4) 109-4 (4) 106-3 (4) 106-3 (4) 106-1 (4) 115-1 (4) 115-2 (4) 100-5 (5) 109-5 (5) 103-4 (5) 117-7 (4) 131-1 (4) 111-2 (4) 121-1 (5) 108-6 (4) 1303-5 (4) 177-2 (5) 127-2 (5) 108-0 (5) 124-8 (6)	$\begin{array}{c} C(2) = C(3) \\ C(3) = C(4) \\ C(2) = O(2) = C(12) \\ C(2) = O(4) = C(13) \\ C(2) = O(4) = C(13) \\ C(2) = O(5) = C(16) \\ O(1) = C(1) = C(6) \\ O(1) = C(1) = C(6) \\ O(2) = C(2) = C(1) \\ O(2) = C(2) = C(1) \\ O(2) = C(2) = C(1) \\ O(2) = C(2) = C(3) \\ O(4) = C(3) = C(11) \\ C(2) = C(3) = C(14) \\ C(3) = C(4) = C(5) \\ O(5) = C(5) = C(6) \\ O(5) = C(5) = C(6) \\ O(5) = C(5) = C(15) \\ O(4) = C(15) \\ O(5) = C(5) = C(15) \\ O(4) = C(15) \\ O(5) = C(5) \\ O(5) = C(5) = C(15) \\ O(5) = C(5) \\ O(5) \\ O(5) = C(5) \\ O(5) \\ $	$\begin{array}{c} 110.27 \ (13) \\ 108.64 \ (13) \\ 116.93 \ (13) \\ 121.17 \ (15) \\ 126.06 \ (17) \\ 112.74 \ (13) \\ 106.81 \ (12) \\ 108.56 \ (12) \\ 111.03 \ (13) \\ 108.03 \ (13) \\ 108.03 \ (13) \\ 112.31 \ (12) \\ 109.95 \ (13) \\ 109.95 \ (13) \\ 104.97 \ (12) \\ 112.59 \ (14) \\ 106.92 \ (13) \\ 111.09 \ (14) \\ 105.45 \ (12) \\ 109.11 \ (14) \\ 105.45 \ (12) \\ 109.11 \ (14) \\ 105.27 \ (14) \\ 109.11 \ (14) \\ 105.21 \ (15) $	$\begin{array}{c} C(4) - C(5) - C(15) \\ C(6) - C(5) - C(15) \\ C(1) - C(6) - C(5) \\ C(1) - C(6) - C(7) \\ C(5) - C(6) - C(7) \\ C(6) - C(7) - C(11) \\ C(7) - C(8) - C(7) - C(11) \\ C(8) - C(7) - C(11) \\ C(7) - C(8) - C(9) \\ C(10) - C(11) \\ C(7) - C(10) \\ C(11) - C(10) \\ C(11) - C(10) \\ C(7) - C(11) - C(10) \\ C(7) - C(11) - C(10) \\ C(10) - C(11) \\ C(10) - C(10) \\ C$	111-95 (3) 111-95 (14) 106-94 (14) 107-78 (14) 103-82 (14) 105-75 (13) 130-93 (18) 113-82 (15) 113-23 (17) 102-04 (18) 109-51 (19) 102-61 (19) 116-95 (15) 130-43 (17) 112-61 (16) 122-69 (18) 107-82 (15) 129-49 (17) 106-03 (15) 176-43 (20) 122-30 (15) 176-43 (20) 122-30 (15) 176-43 (20) 122-30 (15) 10-82 (20) 126-85 (21)
Compound (4 O(1)—C(1) O(2)—C(2) O(2)—C(12) O(3)—C(12)	0) 1·198 (6) 1·433 (5) 1·368 (5) 1·193 (6)	C(3)—C C(3)—C C(3)—C C(4)—C	1(4) 1 1(11) 1 1(14) 1 1(5) 1	-542 (5) -514 (5) -526 (5) -559 (5)	Compound (5b) O(1)—C(1) O(2)—C(2)	1·200 (3) 1·433 (3)	C(3)—C(4) C(3)—C(11)	1·545 (3) 1·508 (3)

.

Table 2 (cont.)

O(2)—C(12)	1.374 (3)	C(3)—C(14)	1.524 (3)
O(3)-C(12)	1.192 (3)	C(4)—C(5)	1.551 (3)
O(4)—C(2)	1.407 (2)	C(5)—C(6)	1.548 (3)
O(4)-C(13)	1.442 (3)	C(5)—C(15)	1.493 (3)
O(5)—C(5)	1.449 (3)	C(6)—C(7)	1.506 (3)
O(5)C(16)	1.367 (3)	C(7)—C(8)	1.504 (4)
O(6)—C(16)	1.198 (3)	C(7)—C(11)	1.318 (3)
O(7)—C(18)	1.417 (3)	C(8)—C(9)	1.528 (5)
O(7)—C(20)	1.433 (4)	C(9)—C(10)	1.535 (5)
O(8)—C(18)	1.419 (3)	C(10)—C(11)	1.490 (4)
O(8)-C(21)	1.399 (4)	C(12)—C(13)	1.502 (4)
N—C(15)	1.134 (3)	C(16)—C(17)	1.495 (4)
C(1)C(2)	1.553 (3)	C(17)—C(18)	1.525 (3)
C(1)—C(6)	1.524 (3)	C(18)—C(19)	I·516 (4)
C(2)—C(3)	1.537 (3)	C(20)—C(21)	1.475 (7)
C(2)-O(2)-C(12) 108.12 (17)	C(1) - C(6) - C(7)	103-57 (19)
C(2)-O(4)-C(13) 107.25 (16)	C(5) - C(6) - C(7)	106-21 (18)
C(5)-O(5)-C(16) 115.62 (16)	C(6)-C(7)-C(8)	130.82 (22)
C(18)-O(7)-C(2	0) 106-83 (24)	C(6) - C(7) - C(11)	115.83 (20)
C(18)-O(8)-C(2	1) 109.91 (23)	C(8) - C(7) - C(11)	113.27 (23)
O(1) - C(1) - C(2)	121-30 (19)	C(7) - C(8) - C(9)	102.17 (24)
O(1) - C(1) - C(6)	125.89 (20)	C(8) - C(9) - C(10)	108.4 (3)
C(2) - C(1) - C(6)	112.68 (18)	C(9)-C(10)-C(11)) 102.9 (3)
O(2) - C(2) - O(4)	106.93 (15)	C(3)-C(11)-C(7)	116.71 (20)
O(2) - C(2) - C(1)	107.01 (16)	C(3)-C(11)-C(10	130.69 (21)
O(2) - C(2) - C(3)	111.22 (17)	C(7)-C(11)-C(10	112.58 (21)
O(4) - C(2) - C(1)	109.58 (17)	O(2) - C(12) - O(3)	121.32 (22)
O(4) - C(2) - C(3)	112.52 (16)	O(2)-C(12)-C(13) 107.86 (19)
C(1) - C(2) - C(3)	109.41 (16)	O(3)-C(12)-C(13	130.82 (22)
C(2)-C(3)-C(4)	105.78 (17)	O(4)-C(13)-C(12) 104-19 (19)
C(2)-C(3)-C(11) 104.37 (16)	N-C(15)-C(5)	174-6 (3)
C(2)-C(3)-C(14) 112.37 (18)	O(5)-C(16)-O(6)	121.71 (22)
C(4)-C(3)-C(11) 107.61 (17)	O(5)-C(16)-C(17) 113.36 (20)
C(4)-C(3)-C(14) 110.80 (19)	O(6)-C(16)-C(17) 124.93 (23)
C(11)-C(3)-C(1	4) 115-26 (19)	C(16)-C(17)-C(17)	8) 114-40 (21)
C(3)-C(4)-C(5)	111.73 (18)	O(7)-C(18)-O(8)	106.01 (19)
O(5)-C(5)-C(4)	112.97 (18)	O(7)-C(18)-C(17) 108-22 (19)
O(5)-C(5)-C(6)	106.45 (17)	O(7)-C(18)-C(19) 112.07 (24)
O(5)-C(5)-C(15) 109.25 (17)	O(8)-C(18)-C(17) 110.22 (20)
C(4)-C(5)-C(6)	109.76 (18)	O(8)-C(18)-C(19) 109.80 (22)
C(4)-C(5)-C(15) 111-95 (18)	C(17)-C(18)-C(1	9) 110.43 (24)
C(6)-C(5)-C(15) 106.09 (18)	O(7)-C(20)-C(21) 104.7 (3)
C(1) - C(6) - C(5)	108-36 (18)	O(8)-C(21)-C(20) 105.8 (3)

and $-0.32 \text{ e} \text{ Å}^{-3}$; the secondary-extinction coefficient = 0.56 (4) (Larson, 1967; Zachariasen, 1963).

Compound (4b): Crystal $0.20 \times 0.36 \times 0.30$ mm; a total of 2139 reflections collected (2139 independent, 2039 observed) in the ranges $0 \le h \le 10$, $0 \le k \le 12$, $0 \le l \le 28$; maximum Δ/σ (for non-H atoms) = 0.054; maximum and minimum density peaks = 0.23 and -0.17 e Å⁻³; the secondary-extinction coefficient = 0.41 (1).

Compound (5*a*): Crystal $0.12 \times 0.15 \times 0.15$ mm; a total of 4522 reflections collected (3089 independent, 2685 observed) in the ranges $-9 \le h \le 9$, $0 \le k \le 10$, $-14 \le l \le 13$; maximum Δ/σ (for non-H atoms) = 0.036; maximum and minimum density peaks = 0.21 and $-0.18 \text{ e} \text{ Å}^{-3}$; the secondary-extinction coefficient = 0.78 (2).

Compound (5b): Crystal $0.10 \times 0.15 \times 0.15$ mm; 4226 reflections collected (3969 independent, 2803 observed) in the ranges $-21 \le h \le 21$, $0 \le k \le 13$, $0 \le l \le 25$; maximum Δ/σ (for non-H atoms) = 0.03; maximum and minimum density peaks = 0.27 and -0.01 e Å⁻³; the secondary-extinction coefficient = 0.75 (3).

The structures were solved by direct methods and refined by full-matrix least squares using the *NRCVAX* system (Gabe, Lee & Le Page, 1985). No absorption correction was applied. Hydrogen positions were located in difference Fourier maps. The final refinement included anisotropic thermal parameters for non-H atoms. The H atoms were isotropi-

(4*a*)

(4*b*)

Fig. 1. ORTEP view of the crystal structures (Johnson, 1976).

cally refined. Atomic scattering factors as stored in the *NRCVAX* program were those of Cromer & Waber (1974). Function minimized: $\sum w(|F_o| - |F_c|)^2$, $w = 1/\sigma^2(F)$.

Discussion. The atomic parameters x, y, z and B_{eq} are listed in Table 1.* Intramolecular distances and angles are given in Table 2. The numbering scheme is shown along with an *ORTEP* view of the molecules in Fig. 1.

The tricyclic carbon backbone is identical in the four compounds. The crystal structure determinations of the two pairs of Diels-Alder adducts show that the compounds have the convenient stereo-chemistry at C(5) to permit a possible connection between C(17) and C(1) (Fig. 1). The reasons for the failure of the cyclization reaction *via* aldol condensation are still to be clarified.

Interestingly, the separations of pairs of diastereomers (4a)/(5a) and (4b)/(5b) by thin-layer chromatography was made possible by the differences in polarities generated by different orientations of the lactone moiety, as revealed by the present study.

No abnormal intermolecular contacts were observed.

References

- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 99–101. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- DESLONGCHAMPS, P., BÉLANGER A., BERNEY, D. J. F., BORSCH-BERG, H.-J., BROUSSEAU, R., DOUTHEAU, A., DURAND, R., KATAYAMA, H., LAPALME, R., LETURC, D. M., LIAO, C.-C., MACLACHLAN, F. N., MAFFRAND, J.-P., MARAZZA, F., MAR-TINO, R., MOREAU, C., RUEST, L., ST-LAURENT, L., SAINTONGE, R. & SOUCY, P. (1990). Can. J. Chem. 68, 115–126.
- GABE, E. J., LEE, F. L. & LE PAGE, Y. (1985). The NRCVAX Crystal Structure System. In Crystallographic Computing 3: Data Collection, Structure Determination, Proteins and Databases, edited by G. M. SHELDRICK, C. KRÜGER & R. GODDARD, pp. 167-174. Oxford: Clarendon Press.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- LARSON, A. C. (1967). Acta Cryst. 23, 664-665.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1991). C47, 768-771

Structure of Two Pyrethroid Insecticides: Acrynathryn (RU 38702) and a Derivative (RU 38181)*

By F. BAERT AND A. GUELZIM

Laboratoire de Dynamique des Cristaux Moléculaires associé au CNRS UA 801, Université des Sciences et Techniques de Lille Flandres Artois, 59655 Villeneuve d'Ascq CEDEX, France

and G. Germain

Laboratoire de Chimie Quantique, Bâtiment Lavoisier, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium

(Received 2 November 1989; accepted 28 June 1990)

Abstract. The crystal structures of two crystalline pyrethroid insecticides have been determined at 293 K from three-dimensional X-ray diffraction data. (I), α -cyano-3-phenoxybenzyl 2-(*tert*butoxycarbonylvinyl)-3,3-dimethylcyclopropanecarboxylate (RU 38181), C₂₇H₂₉NO₅, monoclinic, P2₁, $M_r = 447.5$, a = 17.740 (9), b = 6.133 (3), c =11.064 (7) Å, $\beta = 98.96$ (0.5)°, Z = 2, V = 1189.1 Å³, $D_x = 1.25 \text{ Mg m}^{-3}$, Mo $K\overline{\alpha}$, $\lambda = 0.7107 \text{ Å}$, $\mu = 0.50 \text{ mm}^{-1}$, F(000) = 476. (II), α -cyano-3-phenoxybenzyl 2-(1,1,1,3,3,3-hexafluoro-2-propoxy-carbonylvinyl)-3,3-dimethylcyclopropanecarboxylate (RU 38702), $C_{26}H_{21}F_6NO_5$, orthorhombic, $P2_12_12_1$, $M_r = 541.4$, a = 9.400 (7), b = 37.323 (13), c = 7.535 (4) Å, Z = 4, $V = 2643.6 \text{ Å}^3$, $D_x = 1.36 \text{ Mg m}^{-3}$, Mo $K\overline{\alpha}$, $\lambda = 0.7107 \text{ Å}$, $\mu = 0.81 \text{ mm}^{-1}$, F(000) = 1112. The residual *R* factors are 0.054 and 0.084 respectively for the observed structure factors with $I > 3\sigma(I)$. The most significant

© 1991 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom parameters, torsion angles and spectroscopic data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53595 (84 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

^{*} The insecticides have been patented by Roussel UCLAF, European Patent Number 48186 (26 June 1981).